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of 474,197 patients, and 21 basic science and clinical stud-
ies on robotic-assisted knee arthroplasty. Twenty-eight of 
these comparative computer navigation studies reported Knee 
Society Total scores in 3504 patients. Stratifying by type of 
surgical variables, no significant differences were noted in 
outcomes between surgery with computer-navigated TKA 
controlling for alignment and component positioning versus 
conventional TKA (p = 0.63). However, significantly better 
outcomes were noted following computer-navigated TKA 
that also controlled for soft tissue balancing versus conven-
tional TKA (mean difference 4.84, 95 % Confidence Interval 
1.61, 8.07, p = 0.003). A literature review of robotic systems 
showed that these systems can, similarly to computer naviga-
tion, reliably improve lower leg alignment, component posi-
tioning and soft tissues balancing. Furthermore, two studies 
comparing robotic-assisted with computer-navigated surgery 
reported superiority of robotic-assisted surgery in controlling 
these factors. Manually controlling all these surgical vari-
ables can be difficult for the orthopaedic surgeon. Findings in 
this study suggest that computer navigation or robotic assis-
tance may help managing these multiple variables and could 
improve outcomes. Future studies assessing the role of soft 
tissue balancing in knee arthroplasty and long-term follow-up 
studies assessing the role of computer-navigated and robotic-
assisted knee arthroplasty are needed.

Keywords Computer navigation · Robotics · 
Unicompartmental knee arthroplasty · Total knee 
arthroplasty · Soft tissue balancing

Introduction

Unicompartmental knee arthroplasty (UKA) and total 
knee arthroplasty (TKA) are two reliable treatment options 

Abstract Recently, there is a growing interest in surgical var-
iables that are intraoperatively controlled by orthopaedic sur-
geons, including lower leg alignment, component positioning 
and soft tissues balancing. Since more tight control over these 
factors is associated with improved outcomes of unicompart-
mental knee arthroplasty and total knee arthroplasty (TKA), 
several computer navigation and robotic-assisted systems 
have been developed. Although mechanical axis accuracy 
and component positioning have been shown to improve with 
computer navigation, no superiority in functional outcomes 
has yet been shown. This could be explained by the fact that 
many differences exist between the number and type of sur-
gical variables these systems control. Most systems control 
lower leg alignment and component positioning, while some 
in addition control soft tissue balancing. Finally, robotic-
assisted systems have the additional advantage of improving 
surgical precision. A systematic search in PubMed, Embase 
and Cochrane Library resulted in 40 comparative studies and 
three registries on computer navigation reporting outcomes 
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for knee osteoarthritis. Recent systematic reviews have 
reported 92 % 10-year survivorship of medial UKA [125] 
and 95 % of TKA [79], although registries have reported 
lower rates [2, 3, 19, 85, 87]. Over the last two decades, 
there is a growing interest towards perioperative variables 
that are controlled by the orthopaedic surgeon. These vari-
ables, which include lower leg alignment, soft tissues bal-
ance, joint line maintenance and the alignment, sizing and 
fixation of the components, have been shown to improve 
knee arthroplasty outcomes (Table 1).

Most often these variables are manually controlled 
with the aid of extramedullary or intramedullary align-
ment guides. Since more tight control over these factors is 
associated with improved outcomes and prosthesis survival 

(Table 1), several computer navigation systems have been 
developed. Usage of these systems for knee arthroplasty 
has grown over the last 15 years; in Australia, in 2003 
2.4 % of all primary TKA was performed with the use of 
computer navigation, while this increased to 23.8 % in 
2013 [2, 31].

It is important to acknowledge differences in computer 
navigation systems with regard to the number and type of 
variables they aim to control. Most systems control lower 
leg alignment and component positioning, while some sys-
tems additionally control soft tissue balancing (Table 2). 
This balancing of soft tissues throughout the range of 
motion (ROM) is considered important since this may pre-
vent the knee being tight or lax and subsequent abnormal 

Table 1  Overview of surgical variables that are important for knee arthroplasty along with the consequences of not correctly controlling these 
variables according to the literature

OA osteoarthritis, UKA unicompartmental knee arthroplasty

Surgical variables Consequence References

Lower leg alignment Aseptic loosening, polyethylene wear, OA progression (UKA) [50, 96, 98, 102, 123, 126, 128]

Soft tissue balancing Instability, polyethylene wear, pain [5, 90, 95, 100, 129]

Joint line maintenance Aseptic loosening, polyethylene wear, OA progression (UKA) [51, 54, 88, 144]

Component alignment Aseptic loosening, pain, instability [7, 28, 86, 101, 143]

Component size Mediolateral overhang, pain, instability [13, 14, 20, 82, 116, 138]

Component fixation Aseptic loosening, tibial subsidence, periprosthetic fractures [8, 35, 38, 53, 56, 132]

Table 2  Overview of different systems of studies reporting Knee Society Scores following computer-navigated TKA or UKA

Studies or registries that had different systems or not reported systems used [2, 41, 99, 104]

Systems for TKA Developer Alignment lower  
leg/component

Soft tissue  
balancing

Robotic References

Ci navigation DePuy Yes No No [9, 36, 48, 121, 142]

Electromagnetic Zimmer Yes No No [119]

Knee navigation Stryker Yes No No [15, 43, 45, 71, 103, 115]

Navitrack navigation Zimmer Yes No No [47]

OrthoPilot Aesculap Yes No No [32, 44, 57, 78, 118, 134, 135]

PiGalileo Plus Orthopedics Yes Yes No [52, 75, 109]

Ci Mi TKR BrainLab/DePuy Yes Yes No [12, 92]

Vector vision BrainLab Yes Yes No [24, 49, 62–64, 70, 127]

ROBODOC Aesculap Yes Yes Yes [65, 93, 113, 114]

Systems for UKA Developer Lower leg/component 
alignment

Additional soft 
tissue balancing

Robotic References

Acrobot Acrobot Co. Ltd. Yes No No [27]

Knee navigation Stryker Yes No No [59]

OrthoPilot Aesculap Yes No No [105, 112, 131]

Vector vision BrainLab Yes Yes No [141]

RIO MAKO Yes Yes Yes [42]

Monet—UKA Orthokey Yes Yes Yes [73]
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wear patterns [129], instability [90] and decreased propri-
oception [5]. A different group of recently developed sys-
tems are robotic-assisted systems, which not only control 
aforementioned surgical variables but also improve the 
surgical precision [67, 110, 122]. Finally, over recent years 
patient-specific instrumentations have been developed [84], 
but this will remain outside the focus of this article since it 
is discussed in another article in this issue.

Several meta-analyses have assessed whether these sys-
tems indeed improve the control of these surgical variables 
in TKA [10, 17, 22, 29, 39, 46, 74, 81, 106] and UKA [83, 
130]. Many studies showed that mechanical axis accuracy 
is improved using computer navigation and mechanical 
axis outlier risk is decreased compared to conventional 
surgery (Table 3). Furthermore, it has been shown that the 
component positioning is more accurate using computer 
navigation (Table 3). Although these radiographic factors 
are indicative for an increased failure risk [7, 18, 28, 50, 
58, 86, 96, 98], meta-analyses have not clearly shown dif-
ferences in outcomes between navigated and conventional 
TKA (Table 3). Similarly for robotic systems, several 
cadaveric studies [25, 80, 136] and randomized clinical tri-
als (RCTs) [27, 65, 93, 113, 114] have shown that robotic-
assisted systems provide more accuracy and decrease outli-
ers when compared to conventional knee arthroplasty but 
studies comparing outcomes are scarce [112, 114].

Aim of this review was to discuss current state of com-
puter navigation and robotic-assisted systems in knee 
arthroplasty. Aforementioned meta-analyses have clearly 
shown that these systems improve radiographic align-
ment and component positioning but the role on outcomes 
and survivorship remains unclear. Therefore, a systematic 
search of the literature was performed to guide this discus-
sion on the current state of computer navigation and robot 
systems. Goals of this study were fourfold: (1) to perform 
a meta-analysis of computer-navigated versus conventional 
knee arthroplasty outcomes, (2) to conduct a systematic 
review of literature on robotic-assisted knee arthroplasty, 
(3) to discuss studies comparing computer-navigated to 
robotic-assisted knee arthroplasty and (4) discuss the cur-
rent state of computer-assisted and robotic-assisted knee 
arthroplasty in the light of these findings.

Review

Search strategy and study design

A systematic search was performed using PRISMA guide-
lines [77]. Databases of PubMed, Embase and Cochrane 
were searched for studies on computer-navigated or 
robotic-assisted knee arthroplasty on 15 January 2016. 
Search criterion was the pattern “(robot* OR navigat* 

OR comput*) AND knee arthroplasty” for English studies 
since 2000. It was filtered for clinical studies, clinical tri-
als, comparative studies, controlled clinical trials, observa-
tional studies and randomized clinical trials. After remov-
ing duplicates, two authors (*** and ***) independently 
scanned all studies for eligibility by title and abstract. 
These selected studies were then scanned by full text on 
inclusion and exclusion criteria. Finally, national registries 
and article reference lists were scanned for additional data, 
and contact persons of robotic-assisted systems were con-
tacted to request a list of their publications. Consensus was 
reached for all articles.

Inclusion criteria for the meta-analysis consisted of 
English-language studies that (1) reported revision rates or 
functional outcomes of TKA or UKA, (2) were compara-
tive studies, (3) were minimum level III studies [133] pub-
lished between 2000 and 2016. Exclusion criteria consisted 
of studies that (1) did not report revisions or mean follow-
up or (2) did not report mean score, standard deviation or 
number of patients (required for meta-analysis).

The level of evidence for all studies was determined 
by using the adjusted Oxford Centre for Evidence-Based 
Medicine [133], and methodological quality of the included 
studies was graded according to the Grades of Recom-
mendation, Assessment, Development, and Evaluation 
(GRADE) [4]. Two authors (*** and ***) assessed all 
studies with any disagreement mediated by a third author 
(***). Consensus was reached for all studies.

All data were collected in a datasheet in Excel 2011 
(Microsoft Corp., Redmond, WA, USA) and included study 
authors, publication year, mean follow-up, number of pro-
cedures and failures and reported functional outcomes. 
Revision rates were reported as annual revision rate (ARR), 
which is defined as the number of revisions divided by the 
total observed component years and enables comparison of 
revision rates between groups with different follow-up time 
[61, 89, 108, 125]. TKA functional outcomes were strati-
fied by studies using computer navigation for lower leg 
and component alignment with or without correcting for 
soft tissue balancing (both with virtual software or tensor 
devices [63]). Since Knee Society Score (KSS) was most 
commonly used in TKA, studies reporting KSS Total were 
included for meta-analysis. When necessary, KSS Total 
scores were calculated by summing the KSS Knee and KSS 
Function scores, while the standard deviation was calcu-
lated by the square root of the pooled variance [124]. Out-
comes were stratified by follow-up time and were reported 
as odds ratios (OR) or mean difference (MD) with 95 % 
confidence.

Statistical analysis was performed using Microsoft 
Excel and Review Manager 5.3 (Nordic Cochrane Center, 
Copenhagen, Denmark). Using forest plots, dichotomous 
outcomes were used to compare ARR, while continuous 
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outcomes were used to compare functional outcomes. Het-
erogeneity was expressed via I2 statistic and Chi-square 
tests. Random-effects models were used for all analyses 
[16]. A funnel plot was used to assess publication bias in 
any of the included studies. Outcomes were considered sig-
nificant when p < 0.05.

After removing duplicates, reviewing title, abstract and 
full text of the articles, a total of 40 studies [9, 12, 15, 24, 
32, 36, 42–45, 47–49, 52, 57, 59, 62–64, 70, 71, 73, 75, 78, 
92, 103–105, 109, 112, 115, 118, 119, 121, 127, 131, 134, 
135, 141, 142] and three registries [2, 41, 99] were included 
(Fig. 1) that included a total of 474,197 patients. Sixteen 
of the included studies were level I studies [9, 24, 32, 43, 
48, 57, 64, 71, 75, 92, 103, 109, 115, 119, 127, 135], while 
nine studies were level II [15, 44, 45, 62, 63, 105, 134, 141, 

142] and 15 were level III therapeutic studies [12, 36, 42, 
47, 49, 52, 59, 70, 73, 78, 104, 112, 118, 121, 131]. Qual-
ity of evidence and recommendation using the GRADE 
criteria varied between low and high with most of the stud-
ies having high quality [4]. No publication bias could be 
detected in any of the analyses using funnel plots.

Outcomes of computer‑navigated versus conventional 
knee arthroplasty

Six studies [42, 59, 73, 112, 131, 140] reported UKA 
revisions in a total of 200 patients with 6 failures follow-
ing navigated and 4 failures following conventional UKA. 
Only two studies reported a follow-up of more than 2 years 
(both nine years follow-up) [59, 112] and both showed no 

Fig. 1  PRISMA flow chart of study
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differences in survivorship. The ARR in computer-assisted 
UKA surgery (1.01) was not significantly different com-
pared to conventional surgery (0.64, p = 0.49).

Six studies [59, 73, 105, 112, 131, 141] reported func-
tional outcomes of computer-navigated versus conventional 
UKA in a total of 262 patients. Four studies [73, 105, 131, 
141] reported follow-up of two year or less and did not 
find any differences between both procedures. Two stud-
ies reported outcomes at nine-year follow-up [59, 112]. 
Konyves et al. did not find any significant differences 
which were attributed to the small sample size [59], while 
Song et al. showed significant better outcomes and pain 
scores in navigated compared to conventional UKA [112]. 
Forest plot analysis was not performed due to different out-
come scoring systems.

Seven studies [24, 45, 48, 52, 57, 104, 142] and three 
registries [2, 41, 99] reported ARR of computer naviga-
tion versus conventional TKA surgery in 470,231 patients. 
Analysis showed an ARR of 0.55 in patients who under-
went computer-navigated TKA surgery and an ARR of 
0.56 in patients who underwent conventional TKA surgery 
(p = 0.58, Fig. 2).

Twenty-eight studies [9, 12, 15, 24, 32, 36, 43, 44, 47, 
49, 57, 62–64, 70, 71, 75, 78, 92, 103, 109, 115, 118, 119, 
121, 127, 134, 135] reported KSS Total scores in 3504 
patients who underwent TKA surgery. Patients reported 
better outcomes following computer-navigated TKA 
compared to conventional TKA [MD 2.86 (0.96, 4.76), 
p = 0.003]. This was both seen at short-term follow-up 
of 6 months and 1 year [MD 5.20 (3.41, 7.00) and MD 

8.46 (0.65, 16.28), respectively] and mid-term follow-up 
(≥4 years) [MD (2.65 0.96, 4.76)] (Fig. 3).

Seventeen studies [9, 15, 32, 36, 43, 44, 47, 57, 71, 
78, 103, 115, 118, 119, 121, 134, 135] reported the use of 
navigation systems for lower leg alignment and compo-
nent positioning without differences in KSS Total scores 
(p = 0.63, Fig. 4). Analysis of 11 studies [12, 24, 49, 62–
64, 70, 75, 92, 109, 127] also controlling soft tissue balance 
using navigation showed that patients undergoing com-
puter-navigated TKA reported better functional outcomes 
than conventional TKA [MD 4.84 (1.61, 8.07), p = 0.003] 
(Fig. 5).

Studies reporting outcomes of robotic‑assisted surgery

Robotic-assisted surgery is a relatively new concept, so 
fewer clinical comparative studies have been published. 
Twenty-one studies [11, 25–27, 30, 34, 55, 60, 65, 66, 68, 
69, 72, 80, 93–95, 107, 111, 113, 114] were identified that 
assessed the role of robotic-assisted surgery on the afore-
mentioned surgical variables (Table 1).

For UKA, Pearle et al. [94] showed in the first ten 
patients treated with the MAKO system (MAKO Surgi-
cal Corp., Fort Lauderdale, FL, USA) that all patients 
were within 1.6° of the mechanical axis. Dunbar et al. [34] 
showed in a series of 20 patients reliable positioning of 
both components using this system. Lonner et al. and Smith 
et al. also reported reliable component positioning using 
the Navio System (Blue Belt Technologies Inc., Plymouth, 
MN, USA) [69, 111]. Furthermore, Plate et al. [95] showed 

Fig. 2  Forest plots are shown of cohort studies (upper) and registries (lower) reporting TKA annual revision rates in patients undergoing navi-
gated versus conventional TKA surgery
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in 52 patients undergoing UKA using the MAKO system 
that soft tissue balancing was accurate up to 0.53 mm com-
pared to the operative plan and 83 % of the cases were 
within 1 mm throughout ROM.

The control of these surgical variables was also assessed 
in studies comparing robotic-assisted to manual UKA. 
Cobb et al. [27] and Lonner et al. [68] showed in clinical 
studies using the Acrobot (Acrobot Co. Ltd, London, UK) 

and MAKO system, respectively, that robotic-assisted sur-
gery had increased mechanical axis accuracy compared to 
manual UKA. Citak et al. [25] found in a cadaveric study 
more accurate implant positioning of both components 
using the MAKO system, while Lonner et al. also found 
more accurate tibial component alignment in a clinical 
study using the MAKO system [68]. Furthermore, MacCal-
lum et al. showed in a clinical study that robotic-assisted 

Fig. 3  Forest plots are shown of cohort studies reporting TKA functional outcomes in patients undergoing navigated versus conventional TKA 
surgery
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surgery with the MAKO system was more precise in the 
coronal and tibial plane in baseplate positioning compared 
to manual UKA [72]. Coon et al. presented the first short-
term outcomes of robotic-assisted surgery in a multicentre 
study reporting 98.9 % survivorship and 92 % satisfaction 
rate in 854 patients [30]. The 98.9 % survivorship is higher 
than other large manual UKA studies at this short-term 
follow-up, [91, 137] which may indicate that indeed con-
trolling these variables could improve UKA survivorship. 
However, comparative studies with longer follow-up are 
clearly needed to draw strong conclusions on this topic.

For TKA, several studies have also assessed the role of 
robotic surgery on the aforementioned surgical variables. 
Bellemans et al. [11] showed in a clinical study of 25 cases 
undergoing TKA using the CASPAR system (URS Ortho, 
Rastatt, Germany) that no patients had mechanical align-
ment, tibial or femoral component positioning and rotation 

beyond 1° of neutral alignment. Siebert et al. also found 
less mechanical axis outliers using this system compared 
to conventional TKA [107]. Liow et al. [65] found in all 
27 patients mechanical alignment <3° and accurate implant 
sizing following TKA surgery using the ROBODOC sys-
tem (Curexo Tech. Corp., Fremont, CA, USA), while Kim 
et al. [55] reported higher implant accuracy and fewer outli-
ers using the ROBODOC system compared to conventional 
surgery. Moon et al. [80] and Park et al. [93] found supe-
riority in femoral component positioning using ROBO-
DOC. Song et al. performed two randomized clinical trials 
comparing ROBODOC robotic-assisted and conventional 
TKA [113, 114]. They found more reliable mechanical axis 
alignment and femoral and tibial component positioning 
using robotic-assisted TKA and also found that 12 patients 
had a preference for the robotic-assisted TKA leg, while 
only six chose the conventional leg [113]. In their second 

Fig. 4  Forest plots are shown of cohort studies reporting TKA functional outcomes in patients undergoing navigated versus conventional TKA 
surgery with navigation systems aiming to control for alignment and component position

Fig. 5  Forest plots are shown of cohort studies reporting TKA functional outcomes in patients undergoing navigated versus conventional TKA 
surgery with navigation systems aiming to control for alignment and component position with in addition controlling for soft tissue balance
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study, they assessed soft tissue balancing and found that 
more robotic-assisted TKA patients had <2 mm flexion–
extension gap and more satisfactory posterior cruciate liga-
ment tension compared to conventional TKA [114].

Computer‑navigated versus robotic‑assisted knee 
arthroplasty

To the best of our knowledge, only two studies have com-
pared outcomes of robotic-assisted versus computer-
navigated TKA surgery [26, 60]. In a retrospective study, 
Clark and Schmidt compared 52 patients undergoing 
robotic-assisted TKA using the Praxim system (OMNIlife 
science, East Taunton, MA, USA) to 29 patients undergo-
ing computer-navigated TKA using eNact Precision Knee 
Navigation System (Stryker Kalamazoo, MI, USA), which 
also controls soft tissue balancing [26]. They found that 
robotic-assisted surgery had shorter surgery time, mechani-
cal alignment 0.5° closer to the neutral mechanical axis and 
shorter hospital stay when compared to computer naviga-
tion. In a cadaver study, Koulalis et al. [60] used the Praxim 
Total Knee Navigation system (Praxim, Grenoble, France) 
in both the computer-navigated and robotic-assisted TKA 
group and added the iBlock (Praxim, Grenoble, France), a 
motorized cutting-guide positioner, to the robotic-assisted 
group. They reported less time for femoral cutting, and 
less resection deviations in coronal and sagittal plane were 
noted in the robotic-assisted group compared to the com-
puter navigation group.

Current state of computer navigation 
and robotic‑assisted knee arthroplasty

Several meta-analyses have shown that computer naviga-
tion improves mechanical alignment, decreases outlier risk 
and improves component positioning [10, 17, 22, 29, 39, 
46, 74, 81, 83, 106, 130] (Table 2). Since many studies sug-
gested a correlation between tighter control of these vari-
ables and better outcomes [7, 18, 28, 50, 58, 86, 96, 98], 
one can expect better outcomes following joint replacement 
using computer navigation, especially at longer follow-up. 
However, meta-analyses have failed to show this correla-
tion, which could be explained by the small number of 
patients, short follow-up and no differentiation between 
different navigation systems used (Table 3).

In this current study, cohort studies did not reveal dif-
ferences in ARR between computer navigation and con-
ventional surgery. This was not surprising given the low 
number of revisions in TKA (64) and UKA (10) and rela-
tively short follow-up (<5 years). Similarly, registries did 
not show any differences between computer navigation 
and conventional TKA with mean follow-up also less than 
5 years. This is likely due to the relatively new concept of 

computer navigation, and studies with longer follow-up are 
necessary to draw strong conclusions on the hypothesis that 
computer navigation improves implant survivorship.

Although not enough studies were available to draw 
conclusion on UKA outcomes, several studies reported 
outcomes following navigated versus conventional TKA. 
Interestingly, it was noted that significant differences 
between computer-navigated and conventional surgery 
were seen when outcomes were stratified by the number 
and type of variables the systems aimed to control (Figs. 4, 
5). These results may indicate that soft tissue balancing 
plays an important role during TKA. Indeed, many studies 
have reported that instability is a very common early failure 
mode in TKA [33, 37, 40], which is often attributed to poor 
soft tissue balancing [40, 90]. Other studies also showed 
an increased risk of polyethylene wear, aseptic loosening 
and pain following poor soft tissue balancing [5, 6, 95, 100, 
129]. For example, Pang et al. [92] compared knee laxity 
in patients operated using computer-navigated TKA, with 
control for soft tissue balance, versus conventional TKA 
and found increased laxity in patients undergoing conven-
tional TKA. Soft tissue balancing is a complex procedure 
and is influenced by several surgical variables including 
lower leg alignment, the joint line, component rotation and 
positioning and size of the components [6]. The orthopae-
dic surgeon now manually controls all these factors, includ-
ing soft tissue balancing, while these variables influence 
each other and are different at different flexion angles. 
Intuitively, it makes sense that computer-assisted surgery 
could help the orthopaedic surgeon given the complexity 
of controlling these multiple variables, especially soft tis-
sue balancing, and given the high reliability of soft tissue 
balancing with computer navigation [117]. Findings in 
this study suggest that soft tissue balancing could play an 
important role in knee arthroplasty and that navigation sys-
tems controlling soft tissue balancing could improve TKA 
outcomes. These findings have not been reported previ-
ously, and therefore studies are needed to confirm the role 
of computer navigation and soft tissue balancing in knee 
arthroplasty.

A review of published studies on robotic-assisted sys-
tems shows that many of the aforementioned surgical vari-
ables, including alignment, implant positioning and soft tis-
sue balancing, can be reliably controlled by robotic systems 
and that this is more accurate than manual surgery. The first 
study reporting robotic-assisted survivorship indeed sug-
gests that survivorship is higher following robotic-assisted 
UKA compared to other large manual UKA cohorts but 
comparative studies and RCTs are clearly needed to fur-
ther assess these outcomes. Furthermore, it is interesting 
to note that two studies comparing robotic-assisted versus 
computer navigation TKA [26, 60] reported superiority of 
robotic-assisted surgery in controlling surgical variables 
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and surgery time. This indicates that for knee arthroplasty 
both balancing soft tissues and surgical precision are 
important characteristics of robotic-assisted surgery. Future 
studies are, however, needed to confirm these findings.

Conclusions

Several studies and meta-analyses have shown that the 
computer navigation and robotic-assisted surgery improves 
mechanical axis accuracy and implant positioning. Find-
ings of this meta-analysis suggest that controlling multiple 
surgical variables, and especially balancing the soft tissues, 
may play an important role in knee arthroplasty. It is fur-
ther suggested that robotic-assisted surgery might be supe-
rior over computer navigation surgery although more stud-
ies are needed on this topic. Furthermore, studies assessing 
the role of soft tissue balancing in knee arthroplasty and 
assessing long-term outcomes of computer navigation and 
robotic-assisted knee arthroplasty are necessary.
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