Biomechanical Assessment of the Anterolateral Ligament of the Knee
A Secondary Restraint in Simulated Tests of the Pivot Shift and of Anterior Stability

Ran Thein, MD, James Boorman-Padgett, BS, Kyle Stone, MS, Thomas L. Wickiewicz, MD, Carl W. Imhauser, PhD, and Andrew D. Pearle, MD

Investigation performed at the Department of Biomechanics, Hospital for Special Surgery, New York, NY

Background: Injury to the lateral capsular tissues of the knee may accompany rupture of the anterior cruciate ligament (ACL). A distinct lateral structure, the anterolateral ligament, has been identified, and reconstruction strategies for this tissue in combination with ACL reconstruction have been proposed. However, the biomechanical function of the anterolateral ligament is not well understood. Thus, this study had two research questions: (1) What is the contribution of the anterolateral ligament to knee stability in the ACL-sectioned knee? (2) Does the anterolateral ligament bear increased load in the absence of the ACL?

Methods: Twelve cadaveric knees from donors who were a mean (and standard deviation) of 43 ± 15 years old at the time of death were loaded using a robotic manipulator to simulate clinical tests of the pivot shift and anterior stability. Motions were recorded with the ACL intact, with the ACL sectioned, and with both the ACL and anterolateral ligament sectioned. In situ loads borne by the ACL and anterolateral ligament in the ACL-intact knee and borne by the anterolateral ligament in the ACL-sectioned knee were determined.

Results: Sectioning the anterolateral ligament in the ACL-sectioned knee led to mean increases of 2 to 3 mm in anterior tibial translation in both anterior stability and simulated pivot-shift tests. In the ACL-intact knee, the load borne by the anterolateral ligament was a mean of ≤10.2 N in response to anterior loads and <17 N in response to the simulated pivot shift. In the ACL-sectioned knee, the load borne by the anterolateral ligament increased on average to <55% of the load normally borne by the ACL in the intact knee. However, in the ACL-sectioned knee, the anterolateral ligament engaged only after the tibia translated beyond the physiologic limits of motion of the ACL-intact knee.

Conclusions: The anterolateral ligament is a secondary stabilizer compared with the ACL for the simulated Lachman, anterior drawer, and pivot shift examinations.

Clinical Relevance: Since the anterolateral ligament engages only during pathologic ranges of tibial translation, there is a limited need for anatomical reconstruction of the anterolateral ligament in a well-functioning ACL-reconstructed knee.

Disclosure: This investigation was supported by the Kirby Foundation, the Clark Foundation, the Institute for Sports Medicine Research, the Surgeon in Chief Fund at the Hospital for Special Surgery, and the Gosnell Family. On the Disclosure of Potential Conflicts of Interest forms, which are provided with the online version of the article, one or more of the authors checked "yes" to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work.

Peer Review: This article was reviewed by the Editor-in-Chief and one Deputy Editor, and it underwent blinded review by two or more outside experts. It was also reviewed by an expert in methodology and statistics. The Deputy Editor reviewed each revision of the article, and it underwent a final review by the Editor-in-Chief prior to publication. Final corrections and clarifications occurred during one or more exchanges between the author(s) and copyeditors.
properties of the anterolateral ligament have been quantified, the in situ biomechanical function of the anterolateral ligament is not well understood.

It is known that the iliotibial band and the soft tissues comprising the midlateral capsule together resist rotational moments and anterior loads. A pioneering study by Segond revealed that the anterolateral capsular structures resist internal rotation of the tibia. Moreover, the iliotibial band and the midlateral capsule resist internal rotation and anterior translation from 30° to 90° of flexion in the ACL-sectioned knee. What is not well explored, however, is the biomechanical function of the specific lateral soft tissue named the anterolateral ligament. In vitro experiments have shown that the distance between femoral and tibial insertions of the anterolateral ligament increase with internal rotation from 30° to 90° of flexion. However, those in vitro data did not address whether the anterolateral ligament bears load. The anterolateral ligament provides limited resistance to anterior tibial loads in the ACL-intact knee in vitro; however, it bears about half of the applied internal rotation moment from 30° to 90° of flexion. Unfortunately, since the data in that experiment were expressed as percentages of the applied moment, the magnitude of force borne by the anterolateral ligament was not reported.

It has been theorized that the anterolateral ligament may be an important stabilizer against the pivot-shift phenomenon, a critical predictor of instability and outcome. However, the role of the anterolateral ligament in resisting the complex multiplanar loads of the pivot shift has not been quantified. Therefore, the goals of this study were (1) to determine the contribution of the anterolateral ligament during knee stability testing in the setting of an ACL-sectioned knee and (2) to quantify the loads carried by the anterolateral ligament in the ACL-intact knee and in the setting of the ACL-sectioned knee during simulated clinical stability examinations.

Materials and Methods

Before biomechanical data collection was begun, 10 knees were dissected to ensure that the anterolateral ligament could be identified following previously published anatomical descriptions. After reflecting the iliotibial band, the tibial insertion of the anterolateral ligament was identified in all 10 knees by flexing from 60° to 90° and applying varus and internal rotation (Fig. 1). The femoral insertion of the anterolateral ligament blended with or fanned around the femoral insertion of the LCL in most cases.

Twelve additional fresh-frozen human cadaveric knees that were not used in the anatomical study (mean age of donors at the time of death, 43 ± 15 years [range, 20 to 64 years]; 8 males and 3 right knees) were acquired. Specimens were stripped of surrounding skin and musculature except for the popliteal muscle-tendon complex, leaving all remaining ligamentous and capsular restraints intact. Then, the remaining proximal portion of the iliotibial band was dissected to within 0.5 cm of its tibial insertion.

TABLE 1 Anterior Translation and Internal Rotation of the Tibia in Response to the Simulated Pivot Shift

<table>
<thead>
<tr>
<th></th>
<th>Intact ACL*</th>
<th>ACL Sectioned*</th>
<th>ACL and ALL Sectioned*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior translation (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion angle of 15°</td>
<td>0.1 ± 2.2</td>
<td>6.8 ± 2.6†</td>
<td>8.7 ± 3.4†‡</td>
</tr>
<tr>
<td>Flexion angle of 30°</td>
<td>0.7 ± 2.4</td>
<td>6.9 ± 2.6†</td>
<td>9.5 ± 3.2†‡</td>
</tr>
<tr>
<td>Internal rotation (deg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion angle of 15°</td>
<td>18.6 ± 7.4</td>
<td>22.3 ± 6.9†</td>
<td>24.9 ± 6.5†‡</td>
</tr>
<tr>
<td>Flexion angle of 30°</td>
<td>22.5 ± 9.1</td>
<td>25.3 ± 8.4†</td>
<td>29.2 ± 8.0†‡</td>
</tr>
</tbody>
</table>

*The values are given as the mean and the standard deviation, with the 95% confidence interval in parentheses. ACL = anterior cruciate ligament, and ALL = anterolateral ligament. †The difference was significant (p < 0.05) relative to the ACL-intact condition. ‡The difference was significant (p < 0.05) relative to the ACL-sectioned condition.

Fig. 1 Lateral view of a cadaveric knee with the anterolateral ligament isolated (star). The tibia is rotated internally and translated anteriorly to engage the lateral structures. The arrows near the femoral insertion highlight the combined, fan-like fibers of the proximal lateral collateral ligament (diamond) and anterolateral ligament.
A medial arthrotomy was performed to confirm that the specimens were free of gross joint degeneration and ligament damage and had had no prior surgery. The femur and tibia were stripped of soft tissue to within 10 cm of the joint line and were then potted in bonding cement (Bondo; 3M). The fibula was fixed to the tibia in their anatomical orientation, using a wood screw.

Specimens were then mounted to a six-degrees-of-freedom robot (ZX16SU; Kawasaki Robotics) instrumented with a universal force-moment sensor (Theta; ATI) (Fig. 2). The femur was fixed to the ground via a pedestal. The tibia was aligned in full extension and was mounted to a fixture attached to the end effector of the robot. Specimens were wrapped in saline solution-soaked gauze to preserve the soft tissues throughout testing.

The locations of anatomical landmarks were defined using a 3-dimensional digitizer with 0.23-mm accuracy (MicroScribe G2X; Solution Technologies). The landmarks included the femoral epicondyles, the lateralmost aspect of the distal end of the tibia, and the midpoint of the sulcus on the fibula where the LCL attaches, and the midsubstance of the superficial medial collateral ligament approximately 2.5 cm distal to the medial joint line. On the basis of these anatomical landmarks, a coordinate system was defined using previously described methods. The long axis of the tibia defined internal and external rotation. The femoral epicondyles defined the flexion axis. The common perpendicular to both of these axes provided a reference axis for measurement of anterior-posterior translation. Tibiofemoral translations were defined relative to a point bisecting the femoral condyles. Loads measured by the universal force-moment sensor were transformed to the anatomical coordinate system of the knee.

The path of passive flexion was subsequently determined from full extension to 90° of flexion in 1° increments, using previously described algorithms. A 10-N compressive force was applied to the tibia, while loads in the remaining directions were minimized within specified tolerances (5 N and 0.4 Nm, respectively). The knee positions along the flexion path were used as the starting points for stability testing.

A pivot-shift examination was simulated by first applying a valgus moment of 8 Nm and then applying an additional internal rotation moment of 4 Nm with the knee fixed at 15° and 30° of flexion. This 2-torque model of the pivot shift elicits anterior tibial subluxation in the ACL-sectioned knee, which is a key aspect of the clinical examination. The Lachman and anterior drawer examinations were simulated by applying a 134-N anterior tibial load with the knee fixed at 30° and 90° of flexion, respectively. The order of stability testing was varied from knee to knee.

Before the stability testing was started, the knee was preconditioned for 10 cycles with anterior loads of 134 N at 30° of flexion and with pivoting loads at 15° of flexion. The tests were performed in five steps (Fig. 3). (1) The kinematic trajectories for each stability test were determined with the ACL and anterolateral ligament intact. (2) Immediately before and after sectioning the ACL, the previously recorded kinematics of the intact knee were repeated and the loads at the knee were measured. (3) The net force carried by the ACL was subsequently determined using vector subtraction (i.e., the principle of superposition). Next, the kinematics of the ACL-sectioned knee were determined. (4) The anterolateral ligament was identified as described above and was sectioned starting at its tibial insertion. Immediately before and after sectioning the anterolateral ligament, the previously recorded kinematics of the ACL-intact and ACL-sectioned knee were repeated and the loads at the knee were measured. (5) Vertical subtraction was again employed to determine the resultant force carried by the anterolateral ligament in the ACL-intact and ACL-sectioned states. Finally, stability tests were conducted in the knee lacking an ACL and an anterolateral ligament.

Kinematic outcomes were the net anterior translation of the tibia in response to the simulated Lachman, anterior drawer, and pivot shift examinations, and the net internal rotation of the tibia in response to the simulated
Results

Kinematics

Sectioning the ACL and performing a simulated pivot-shift examination at 15° of flexion increased anterior tibial translation by a mean of 6.7 ± 1.9 mm compared with the ACL-intact knee (p < 0.001) (Table I) and increased internal tibial rotation by a mean of 3.7° ± 1.3° (p < 0.001) (Table I). Subsequent sectioning of the anterolateral ligament resulted in a mean increase in anterior tibial translation of 1.9 ± 1.3 mm (a 27.6% increase; p = 0.009) and a mean increase in internal tibial rotation of 2.5° ± 1.3° (an 11.3% increase) (p < 0.001) compared with isolated ACL deficiency.

Sectioning the ACL and performing a simulated pivot-shift examination at 30° of flexion increased anterior tibial translation by a mean of 6.2 ± 1.6 mm compared with the ACL-intact knee (p < 0.001) (Table I) and increased internal tibial rotation by a mean of 2.7° ± 1.6° (p < 0.001) (Table I). Subsequent sectioning of the anterolateral ligament resulted in a mean increase in anterior tibial translation of 2.6 ± 1.1 mm (a 38.0% increase; p < 0.001) and a mean increase in internal tibial rotation of 3.9° ± 1.5° (a 15.4% increase; p < 0.001) compared with the ACL-sectioned knee.

Sectioning the ACL increased anterior tibial translation by a mean of 12.3 ± 2.3 mm (p < 0.001) and 7.4 ± 4.2 mm (p < 0.001) compared with the ACL-intact knee during the simulated Lachman and anterior drawer examinations, respectively (Table II). Compared with the ACL-sectioned knee, subsequent sectioning of the anterolateral ligament increased anterior tibial translation by a mean of 3.1 ± 2.1 mm (p = 0.003) and 2.8 ± 1.3 mm (p = 0.049) during the simulated Lachman and anterior drawer examinations, respectively. This represents a 16.2% and 23.4% increase in anterior translation during the Lachman and anterior drawer examinations, respectively, compared with the isolated ACL-sectioned knee.

Ligament Loads

The load carried by the anterolateral ligament in the ACL-intact knee in response to a simulated pivot shift was a mean of 13.5 ± 10.8 N at 15° and 16.6 ± 12.3 N at 30° (Fig. 4). These loads correspond to 13.7% and 16.6%, respectively, of those carried by the ACL, which were 98.8 ± 24.8 N and 100.2 ± 34.3 N at 15° and 30° flexion, respectively (p < 0.001 for both) (Fig. 4).

The loads carried by the anterolateral ligament in the ACL-intact knee in response to the simulated Lachman and anterior drawer examinations were a mean of 10.2 ± 7.5 N and 7.2 ± 8.1 N, respectively (Fig. 5). These loads corresponded to 6.4% and 5.9%, respectively, of those carried by the ACL, which were a mean of 159.7 ± 18.5 N and 120.9 ± 16.1 N, in the simulated Lachman and anterior drawer examinations, respectively (p < 0.001 in both cases) (Fig. 5).

During the simulated pivot-shift examination at 15° and 30° of flexion, the loads in the anterolateral ligament after the ACL was sectioned increased to a mean of 42.9 ± 30.2 N (p = 0.002) and 54.7 ± 25.0 N (p = 0.001), respectively. The magnitude of load carried by the anterolateral ligament was 43.4%...
drawer examinations, respectively (Table II). During the simulated Lachman examination for the ACL-sectioned knee, the anterolateral ligament carried load as the knee translated from 12 to 20 mm (Fig. 6). In contrast, the ACL bore load as the knee translated from 3 to 7 mm anteriorly (Fig. 6).

Discussion

The most important findings were that (1) the load borne by the anterolateral ligament in the ACL-intact knee was minimal, averaging ≤16.6 N in response to the simulated pivot shift and ≤10.2 N in response to anterior loads; (2) the load borne by the anterolateral ligament increased in the ACL-sectioned knee compared with the ACL-intact knee, with an increase of nearly five to sixfold in response to isolated anterior loads and more than threefold in response to the simulated pivot shift; and (3) sectioning the anterolateral ligament in the setting of ACL insufficiency led to 2 to 3 mm of additional anterior translation in both the uniplanar anterior testing (Lachman and anterior drawer) and the multiplanar loading (simulated pivot shift).

These data suggest that the anterolateral ligament is a “secondary stabilizer” to the ACL for the pivot shift, Lachman, and anterior drawer examination. Specifically, the anterolateral ligament experiences low loads during these tests in the ACL-intact knee, but bears increased load and imparts some constraint to stability testing in the ACL-sectioned state (Figs. 4 and 5). Somewhat surprisingly, the anterolateral ligament bears increased load at the extremes of tibial translations in the ACL-sectioned knee, but fails to engage until the tibia has displaced beyond the physiologic boundaries that are present with an intact ACL (Figs. 6 and 7). For example, the tibia must translate approximately 10 to 12 mm anteriorly for the anterolateral ligament to bear at least 20 N of load during the Lachman test (Fig. 6). These data suggest that the ACL and anterolateral ligament have distinct patterns of engagement during the stability examination. The ACL is loaded as the knee is maintained within its normal, physiologic envelope of motion. In contrast, the anterolateral ligament engages only as the knee translates into a pathologic position encountered in the ACL-sectioned knee (Figs. 6 and 7). Thus, the anterolateral ligament may bear load in the setting of failed ACL reconstruction or chronic complete tears of the ACL in which patients may present with anterior tibial subluxation27 of >15 mm28.

Our finding that the anterolateral ligament bears minimal load in the ACL-intact knee in response to the Lachman...
and anterior drawer examinations corroborates previous work. Our finding of a tibial displacement increase of approximately 3 mm in response to anterior stability tests after anterolateral ligament sectioning agrees with a previously reported increase of 4 mm after sectioning the anterolateral structures. In contrast, Spencer et al. found more muted changes in anterior translation after sectioning the anterolateral ligament in the ACL-sectioned knee, with only a 1.9-mm increase during Lachman and anterior drawer examinations; this may be due to arthritic changes noted in their older cohort of specimens or differences in the constraints of their test apparatus.

The anterolateral ligament was previously found to resist isolated internal rotation moments in the ACL-intact knee at >30° of flexion, but less so at <30°. Similarly, our data indicate that the anterolateral ligament plays a minimal role in resisting rotatory multiplanar loads in the ACL-intact knee at 15° and 30° of flexion.

Some knees may be more dependent on the anterolateral ligament to maintain stability. One ACL-sectioned knee in our study had an increase in anterior translation of 5.5 mm and 7.2 mm during the pivot shift and Lachman examinations, respectively, after sectioning of the anterolateral ligament. This was >2.3 times the mean increase of either test. Wrobles et al. also reported high interspecimen variability in the stabilizing role of the anterolateral structures. Clinical examinations identifying individuals who are more dependent on their lateral soft tissues may help to target those who would most benefit from lateral stabilizing procedures with ACL reconstruction.

This study has limitations. First, tissues superficial to the anterolateral ligament, including the distal portion of the iliotibial band, were removed prior to testing. This portion of the iliotibial band might contribute to knee stability even though it lacked a proximal attachment. However, our measurements of anterior tibial translation in the Lachman and anterior drawer examinations agree with previous studies in which the anterolateral tissues and iliotibial band were sectioned together. Therefore, this portion of the iliotibial band does not appear to play a major role. In any case, our findings are a worst-case scenario of the maximum contributions of the anterolateral ligament to knee stability, since the iliotibial band is not there to share load with it. Second, the isolated contribution of the anterolateral ligament to knee stability in an ACL-intact knee was not assessed, since anterolateral ligament injury is primarily observed in combination with ACL rupture. The order of stability testing was varied to mitigate bias caused by first sectioning the ACL and then sectioning the anterolateral ligament. Nonetheless, if repeated loading increased knee rotations and translations, our data are an upper bound of the contribution of the anterolateral ligament to knee stability.

Finally, the clinical pivot-shift examination consists of applied valgus, internal rotation, and anterior loads with flexion. Although the 2-torque model of the pivot shift consists of only a subset of these loads, it causes anterior subluxation of the tibia, which is a critical aspect of the clinical pivot shift.

In conclusion, the anterolateral ligament is a secondary stabilizer to simulated pivot shift, Lachman, and anterior drawer tests. In the ACL-intact knee, the anterolateral ligament carries minimal load during these stability tests. With the ACL sectioned, the anterolateral ligament resists anterior translation and axial tibial rotation, but bears load only beyond the physiologic ranges of the ACL-intact knee. Thus, the need for anterolateral ligament reconstruction in a well-functioning ACL-reconstructed knee appears to be limited.

Note: The authors thank Danyal Nawabi, MD, for his insightful feedback on the manuscript.
Ran Thein, MD
James Boorman-Padgett, BS
Kyle Stone, MST
Thomas L. Wickiewicz, MD
Carl W. Imhauser, PhD
Andrew D. Pearle, MD

1Department of Orthopedic Surgery, Sheba Medical Center, Tel-Hashomer, Israel

2Departments of Biomechanics (J.B.-P., K.S., and C.W.I.) and Orthopedic Surgery (T.L.W. and A.D.P.), Hospital for Special Surgery, New York, NY

E-mail address for R. Thein: ranthein@gmail.com
E-mail address for J. Boorman-Padgett: BoormanP@hss.edu
E-mail address for K. Stone: kstone3@binghamton.edu
E-mail address for T.L. Wickiewicz: WickiewiczT@hss.edu
E-mail address for C.W. Imhauser: ImhauserC@hss.edu
E-mail address for A.D. Pearle: PearleA@hss.edu

References

